Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Medical Bioscience
    • Research Articles (Medical Bioscience)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Medical Bioscience
    • Research Articles (Medical Bioscience)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The variable N-terminal region of DDX5 contains structural elements and auto-inhibits its interaction with NS5B of hepatitis C virus

    Thumbnail
    Date
    2012
    Author
    Dutta, Sujit
    Gupta, Garvita
    Choi, Yook-Wah
    Kotaka, Masayo
    Fielding, Burtram C.
    Song, Jianxing
    Tan, Yee-Joo
    Metadata
    Show full item record
    Abstract
    RNA helicases of the DEAD (Asp-Glu-Ala-Asp)-box family of proteins are involved in many aspects of RNA metabolism from transcription to RNA decay, but most of them have also been shown to be multifunctional. The DEAD-box helicase DDX5 of host cells has been shown to interact with the RNA-dependent RNA polymerase (NS5B) of HCV (hepatitis C virus). In the present study, we report the presence of two independent NS5Bbinding sites in DDX5, one located at the N-terminus and another at the C-terminus. The N-terminal fragment of DDX5, which consists of the first 305 amino acids and shall be referred as DDX5-N, was expressed and crystallized. The crystal structure shows that domain 1 (residues 79–303) of DDX5 contains the typical features found in the structures of other DEADbox helicases. DDX5-N also contains the highly variable NTR (N-terminal region) of unknown function and the crystal structure reveals structural elements in part of the NTR, namely residues 52–78. This region forms an extensive loop and an α-helix. From co-immunoprecipitation experiments, the NTR of DDX5-N was observed to auto-inhibit its interaction with NS5B. Interestingly, the α-helix in NTR is essential for this auto-inhibition and seems to mediate the interaction between the highly flexible 1–51 residues in NTR and the NS5B-binding site in DDX5-N. Furthermore, NMR investigations reveal that there is a direct interaction between DDX5 and NS5B in vitro.
    URI
    http://hdl.handle.net/10566/864
    Collections
    • Research Articles (Medical Bioscience)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV