Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Chemistry
    • Research Articles (Chemistry)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Chemistry
    • Research Articles (Chemistry)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Potential broad spectrum inhibitors of the coronavirus 3CLpro: A virtual screening and structure-based drug design study

    Thumbnail
    View/Open
    Berry_Potential Broad_2015.pdf (1.910Mb)
    Date
    2015
    Author
    Berry, Michael
    Fielding, Burtram C.
    Gamieldien, Junaid
    Metadata
    Show full item record
    Abstract
    Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CLpro provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally.
    URI
    http://hdl.handle.net/10566/2578
    http://dx.doi.org/10.3390/v7122963
    Collections
    • Research Articles (Chemistry)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV