Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Chemistry
    • Research Articles (Chemistry)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Chemistry
    • Research Articles (Chemistry)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrochemical determination of hydrogen peroxide by a nonenzymatic catalytically enhanced silver-iron (iii) oxide/polyoxometalate/reduced graphene oxide modified glassy carbon electrode

    Thumbnail
    View/Open
    Electrochemical Determination of Hydrogen Peroxide by a Nonenzymatic Catalytically Enhanced Silver Iron III Oxide Polyoxometalate Reduced Graphene.pdf (3.764Mb)
    Date
    2020
    Author
    Ross, Natasha
    Civilized Nqakala, Noniko
    Metadata
    Show full item record
    Abstract
    The synergism of phosphomolybdic acid hydrate (POM) decorated with silver-iron (III) oxide (Ag-Fe2O3) nanoparticles and anchored on reduced graphene oxide (RGO) have been demonstrated to be effective as a nonenzymatic H2O2 sensor platform. The assembly of the sensor components and their interactions were probed morphologically, spectroscopically and electrochemically. The Ag-Fe2O3/POM/RGO nanocomposite sensor provided an enhanced electroactive surface area, electrical conductivity and sensitivity for hydrogen peroxide compared to an unmodified glassy carbon electrode (GCE) at –0.55 V versus a saturated calomel electrode. The developed sensor amperometric response was linear across the concentration range from 0.3 mM to 3.3 mM (R2 = 0.992) with a detection limit and sensitivity of 0.2 μM and 271 μA·mM‒1·cm−2 respectively. Concomitantly, a short response time of T90 < 5 sec at a signal-to-noise ratio of 4 was achieved. The sensor was shown to determine hydrogen in the presence of interfering species, and exhibited high selectivity with relative standard deviation values less than 4.2%. The results indicate that the use of RGO to anchor and photochemically reduce POM also improved the reduction properties due to the irregular size distribution and catalytic activity of Ag-Fe2O3 stimulated by its adhesion to the distinctive POM/RGO matrix.
    URI
    10.1080/00032719.2020.1745223
    http://hdl.handle.net/10566/5552
    Collections
    • Research Articles (Chemistry)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV