Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Arts
    • Geography & Environmental Studies
    • Research Publications (Geography & Environmental Studies)
    • View Item
    •   DSpace Home
    • Faculty of Arts
    • Geography & Environmental Studies
    • Research Publications (Geography & Environmental Studies)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Global typologies of coastal wetland status to inform conservation and management

    Thumbnail
    View/Open
    Global typologies of coastal wetland status to inform conservation.pdf (3.471Mb)
    Date
    2021
    Author
    Rajkaran, Anusha
    Sievers, Michael
    Brown, Christopher J.
    Metadata
    Show full item record
    Abstract
    Global-scale conservation initiatives and policy instruments rely on ecosystem indicators to track progress towards targets and objectives. A deeper understanding of indicator interrelationships would benefit these efforts and help characterize ecosystem status. We study interrelationships among 34 indicators for mangroves, saltmarsh, and seagrass ecosystems, and develop data-driven, spatially explicit typologies of coastal wetland status at a global scale. After accounting for environmental covariates and gap-filling missing data, we obtained two levels of clustering at 5 and 18 typologies, providing outputs at different scales for different end users. We generated 2,845 cells (1° (lat) × 1° (long)) globally, of which 29.7% were characterized by high land- and marine-based impacts and a high proportion of threatened species, 13.5% by high climate-based impacts, and 9.6% were refuges with lower impacts, high fish density and a low proportion of threatened species. We identify instances where specific actions could have positive outcomes for coastal wetlands across regions facing similar issues. For example, land- and marine-based threats to coastal wetlands were associated with ecological structure and function indicators, suggesting that reducing these threats may reduce habitat degradation and threats to species persistence. However, several interdimensional relationships might be affected by temporal or spatial mismatches in data. Weak relationships mean that global biodiversity maps that categorize areas by single indicators (such as threats or trends in habitat size) may not be representative of changes in other indicators (e.g., ecosystem function). By simplifying the complex global mosaic of coastal wetland status and identifying regions with similar issues that could benefit from knowledge exchange across national boundaries, we help set the scene for globally and regionally coordinated conservation.
    URI
    https://doi.org/10.1016/j.ecolind.2021.108141
    http://hdl.handle.net/10566/6776
    Collections
    • Research Publications (Geography & Environmental Studies)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV