Show simple item record

dc.contributor.authorNolly, Christopher
dc.contributor.authorIkpo, Chinwe O.
dc.contributor.authorNdipingwi, Miranda M.
dc.date.accessioned2022-11-02T13:13:08Z
dc.date.available2022-11-02T13:13:08Z
dc.date.issued2022
dc.identifier.citationNolly, C.; Ikpo, C.O.; Ndipingwi, M.M.; Ekwere, P.; Iwuoha, E.I. Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide. Nanomaterials 2022, 12, 3514. https://doi.org/10.3390/ nano12193514en_US
dc.identifier.issn2079-4991
dc.identifier.urihttps://doi.org/10.3390/nano12193514
dc.identifier.urihttp://hdl.handle.net/10566/8143
dc.description.abstractSpinel copper manganese oxide nanoparticles combined with acid-treated multi-walled carbon nanotubes (CuMn2O4/MWCNTs) were used in the development of electrodes for pseudocapacitor applications. The CuMn2O4/MWCNTs preparation involved initial synthesis of Mn3O4 and CuMn2O4 precursors followed by an energy efficient reflux growthmethod for the CuMn2O4/MWCNTs. The CuMn2O4/MWCNTs in a three-electrode cell assembly and in 3 M LiOH aqueous electrolyte exhibited a specific capacitance of 1652.91 F g􀀀1 at 0.5 A g􀀀1 current load. Similar investigation in 3 M KOH aqueous electrolyte delivered a specific capacitance of 653.41 F g􀀀1 at 0.5 A g􀀀1 current load. Stability studies showed that after 6000 cycles, the CuMn2O4/MWCNTs electrode exhibited a higher capacitance retention (88%) in LiOH than in KOH (64%).en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.subjectGalvanostatic chargeen_US
dc.subjectNanocomposite electrodeen_US
dc.subjectPseudocapacitoren_US
dc.subjectSpinel metal oxideen_US
dc.subjectCapacitanceen_US
dc.titlePseudocapacitive effects of multi-walled carbon nanotubes-functionalised spinel copper manganese oxideen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record