Library Portal | UWC Portal
    • Login
    Contact Us | Quick Submission Guide | About Us | FAQs | Login
    View Item 
    •   Repository Home
    • Faculty of Natural Sciences
    • Medical Bioscience
    • Research Articles (Medical Bioscience)
    • View Item
    •   Repository Home
    • Faculty of Natural Sciences
    • Medical Bioscience
    • Research Articles (Medical Bioscience)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Over-expression of severe acute respiratory syndrome coronavirus 3b protein induces both apoptosis and necrosis in Vero E6 cells

    Thumbnail
    View/Open
    Khan_Respiratory syndrome_2006.pdf (1.276Mb)
    Date
    2006
    Author
    Khan, Sehaam
    Fielding, Burtram C.
    Tan, Timothy H.P.
    Chou, Chih-Fong
    Shou, Shen
    Lim, Seng Gee
    Hong, Wanjin
    Tan, Yee-Joo
    Metadata
    Show full item record
    Abstract
    The genome of the severe acute respiratory syndrome coronavirus encodes for eight accessory viral proteins with no known homologues in other coronaviruses. One of these is the 3b protein, which is encoded by the second open reading frame in subgenomic RNA 3 and contains 154 amino acids. Here, a detailed time-course study was performed to compare the apoptosis and necrosis profiles induced by full-length 3b, a 3b mutant that was deleted by 30 amino acids from the C terminus (3b 124-154) and the classical apoptosis inducer, Bax. Our results showed that Vero E6 cells transfected with a construct for expressing 3b underwent necrosis as early as 6 h after transfection and underwent simultaneous necrosis and apoptosis at later time-points. At all the time-points analysed, the apoptosis induced by the expression of 3b was less than the level induced by Bax but the level of necrosis was comparable. The 3b 124-154 mutant behaves in a similar manner indicating that the localization of the 3b protein does not seems to be important for the cell-death pathways since full-length 3b is localized predominantly to the nucleolus, while the mutant is found to be concentrated in the peri-nuclear regions. To our knowledge, this is the first report of the induction of necrosis by a SARS-CoV protein.
    URI
    http://hdl.handle.net/10566/884
    http://dx.doi.org/10.1016/j.virusres.2006.06.005
    Collections
    • Research Articles (Medical Bioscience) [99]

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV