Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   DSpace Home
    • Faculty of Natural Sciences
    • Biotechnology
    • Research Articles (Biotechnology)
    • View Item
    •   DSpace Home
    • Faculty of Natural Sciences
    • Biotechnology
    • Research Articles (Biotechnology)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Antibacterial activity of rationally designed antimicrobial peptides.

    Thumbnail
    View/Open
    2131535.pdf (1.383Mb)
    Date
    2020
    Author
    Morris, Thureyah
    Tincho, Marius Belmondo
    Meyer, Mervin
    Metadata
    Show full item record
    Abstract
    Many infectious diseases are still prevalent in the world’s populations since no effective treatments are available to eradicate them. e reasons may either be the antibiotic resistance towards the available therapeutic molecules or the slow rate of producing adequate therapeutic regimens to tackle the rapid growth of new infectious diseases, as well as the toxicity of current treatment regimens. Due to these reasons, there is a need to seek and develop novel therapeutic regimens to reduce the rapid scale of bacterial infections. Antimicrobial Peptides (AMPs) are components of the first line of defense for prokaryotes and eukaryotes and have a wide range of activities against Gram-negative and Gram-positive bacteria, fungi, cancer cells, and protozoa, as well as viruses. In this study, peptides which were initially identified for their HIV inhibitory activity were further screened for antibacterial activity through determination of their kinetics as well as their cytotoxicity. From the results obtained, the MICs of two AMPs (Molecule 3 and Molecule 7) were 12.5 μg/ml for K. pneumoniae (ATCC 700603) and 6.25 μg/ml for P. aeruginosa (ATCC 22108). e two AMPs killed these bacteria rapidly in vitro, preventing bacterial growth within few hours of treatment. Furthermore, the cytotoxic activity of these two peptides was significantly low, even at an AMP concentration of 100 μg/ml. ese results revealed that Molecule 3 and 7 have great potential as antibacterial drugs or could serve as lead compounds in the design of therapeutic regimens for the treatment of antibiotic-resistant bacteria.
    URI
    10.1155/2020/2131535
    http://hdl.handle.net/10566/5612
    Collections
    • Research Articles (Biotechnology)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    Atmire NV